A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows

Jan 1, 2013·
Le Chenadec, V.
,
Pitsch, H.
· 0 min read
Abstract
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensional tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.
Type
Publication
Journal of Computational Physics
publications